由微生物合成的生物降解塑料,簡稱生物塑料,包括生物聚酯、生物纖維素、多糖類和聚氨基酸等,是一類能完全被自然界中的微生物降解的塑料。
微生物體內貯存的動植物脂肪或糖原,是一類脂肪族聚酯,稱為生物聚酯,是微生物的營養物質。當無碳源存在時,這些聚酯可分解為乙酰輔酶作為生命活動的能源。
聚乳酸(PLA)又稱聚內交酯,是以微生物發酵產物乳酸為單體化學合成的。使用后可自動降解,不會污染環境。
聚乳酸可以被加工成力學性能優異的纖維和薄膜,其強度大體與尼龍纖維和聚酯纖維相當。聚乳酸在生物體內可被水解成乳酸和乙酸,并經酶代謝為CO2和H2O,故可作為醫用材料。日本、美國已經利用聚乳酸塑料加工成手術縫合線、人造骨、人造皮膚。聚乳酸還被用于生產包裝容器、農用地膜、纖維用運動服和被褥等。
淀粉塑料含淀粉在90%以上,添加的其他組份也是能完全降解的,目前已有日本住友商事公司、美國Wamer-Lamber公司、意大利Ferrizz公司等宣稱研究成功含淀粉量在90%~100%的全淀粉塑料,在(1月~1年)完全生物降解而不留任何痕跡,無污染,可用于制造各種容器、瓶罐、薄膜和垃圾袋等。
全淀粉塑料的生產原理是使淀粉分子變構而無序化,形成了具有熱塑性能的淀粉樹脂,因此又稱為熱塑性淀粉塑料。其成型加工可沿用傳統的塑料加工設備。
以淀粉為原料開發生物降解塑料的潛在優勢在于:淀粉在各種環境中都具備完全的生物降解能力;塑料中的淀粉分子降解或灰化后,形成二氧化碳氣體,不對土壤或空氣產生毒害;采取適當的工藝使淀粉熱塑性化后可達到用于制造塑料材料的機械性能;淀粉是可再生資源,取之不絕,開拓淀粉的利用有利于農村經濟發展。
需要說明的是,我國目前生產的淀粉塑料絕大多數為填充型淀粉塑料,即在非生物降解的高分子材料中添加一定比例的淀粉,通過淀粉的生物降解而致使整個材料物理性能崩潰,促使大量端基暴露以致氧化降解,但這種“崩潰”后的剩余部分中的PE、PVC等均不可能降解而一直殘留于土壤中,日積月累當然會造成污染,因此國外將此類產品歸屬為淘汰型。
光降解塑料是指在光的作用下能發生降解的塑料。
光降解塑料舉例
按制造方法可將光降解塑料分成合成型降解塑料和添加型降解塑料。
a、乙烯/一氧化碳共聚物(E/CO)
光降解以主鏈斷裂為特征。E/CO的光降解速度和程度與鏈所含的酮基的量有關,含量越高,降解速度越快,程度也越大。美國德克薩斯州的科學家曾對E/CO進行過戶外曝曬實驗,在陽光充足的六月,E/CO最快只需幾天便可降解。
b、乙烯基類/乙烯基酮類共聚物(Ecolyte)
Ecolyte分子側鏈上的酮基在自然光的作用下可發生分解。Ecolyte的光降解性能優于E/CO,但成本也較高。
這類聚合物的缺點是一旦見光就開始發生降解,幾乎沒有誘導期,需要加入抗氧劑以達到調節誘導期的目的。
添加型光降解塑料
添加型光降解塑料是在聚合物中添加少量光敏劑,在低濃度時是光氧化降解催化劑,經日光(紫外光)輻照而發生反應,使聚烯烴高分子斷裂。
在PE、PP等聚合物中添加酮類、胺類等光敏劑都可取得較好的光降解性。
添加型光降解塑料成本低,生產工藝簡單,做覆蓋地膜使用效果較好。但其降解特性是曝光面降解比較徹底,埋在土壤里的部分則降解較差。這類光降解塑料的降解誘導期可控制在二個月以上。但降解時間可控性較差。